














Snag (noun)

\ 'snag \

Definition of snag
a concealed or unexpected difficulty or obstacle
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The 100m radio telescope in Greenbank, USA

The 100m radio telescope in Effelsberg, Germany
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The 100m radio telescope in Greenbank, USA

D=0,1m (10 cm) D =100 m (10 000 cm)
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The 100m radio telescope in Greenbank, USA

R=400 R=1

D=0,1m (10 cm) D=100 m (10 000 cm)
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The 100m radio telescope in Greenbank, USA

D=0,1m (10 cm) D =100 m (10 000 cm)
A =0.0000005 m A=0.1m
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A Neat Trick™
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Interferometry = A Neat Trick™
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*add telescopes

ecorrelation impact:
* all combinations

Nbaselines ~ Ntelescopes?




Earth View (from M87) u,v-plane Coverage

f Galactic N

Earth ’
rotation —»

- .
- -
'''''

Baseline B | .
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| Baseline projection traces ellipse during observation
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Beam for SRC at 6.2 cm
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4 log, (size/km)



Arcminute Microkelvin Imager - SA (AMI), University of Cambridge (~2005)
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Sjarjah Radio Telescope, SAAST/UAE, 2020 e = S N i
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Westerbork Synthesis Radio Telescope MeerKAT, SARAQO, 2018 Australia Telescope Compact Array (ATCA),
(WSRT) ASTRON, 1970'S ATNF/CSIRO, 1988
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Northern Extended Millimeter Array (NOEMA),
MPIfR/IRAM, 2018

0 log, (size/km)
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SKA-LOW, SKAOQO, ~20307

Giant Metre-wave Radio Telescope (GMRT), NCRA, ~2001

log, (size/km)



"\) 130km V
enhanced-MERLIN, A
PyeongChang

University of Manchester, 1980's) 300 km 230 m

Korean VLBI Network (KVN), KASI, 2010

2 log, (size/km)
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T - New science in Radio Astronomy: applying cutting-edge technology to enhance the entire data chain, from re,oeﬁ/er to final output
. il : . ‘ : ¢ . . > 1

BLOCK S N This project has receved fundding from the EC under Grant number: 101093934 .



RADIO New science in Radio Astronomy: applying cutting-edge technology to enhance the entire data chain, from receiver to final output Grant number: 101093934
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First time that comp anies participate in these type of projects. Required by the EU



RADIO New science in Radio Astronomy: applying cutting-edge technology to enhance the entire data chain, from receiver to final output Grant number: 101093934
BLOCKS

RADIOBLOCKS goals

 Building blocks suitable for multiple facilities
» Joint effort to solve common problems

* Enabling new scientific discoveries in mid- and long-term
* Increased sensitivity
* Increased bandwidth
* Increased Field-of-View

» Keeping EU at the front in radio technology developments
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BLOCKS

RADIOBLOCKS goals

Enabling new scientific discoveries
* Increased sensitivity

* Increased bandwidth

* Increased Field-of-View
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RADIOBLOCKS goals

» Keeping EU at the front in radio technology developments
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RADIOBLOCKS goals

* Building blocks suitable for multiple facilities

* Joint effort to solve common problems




Local
Oscillator

Rier 0

Single dish improvements



Local
Oscillator

Qier 0o

Local
Oscillator
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Filter Bank 1

Array of

> multipliers > T

Filter Bank 2

Supporting the next-generation of VLBI



Science enablers: Increase field of view Increase sensitivity and bandwidth

TT_L

The Effelsberg telescope...

A

: ~ _— o

Ef/Sr/Ys ALMA

wd P
psl e MBI R The ALMA telescope...
The SRT telescope...

The NOEMA telescope...

The International LOFAR Telescope... The European VLBI network (EVN)... The SKA telescope...

... hosted by the IRAM institute
E-Merlin...

. hosted by INAF

The Yebes telescope...

... hosted by the European Southern Observatory

O for the European part

hosted by CNIG/IGN

... hosted by the ILT ... hosted by the SKA Office

... hosted by the University of Manchester

Building blocks:
Novel detectors  Digital receivers Transport and Correlator Data (post)processing
and components
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BLOCKS

Project management

Novel detectors and
components

. Digital receivers

Data transport and correlation
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BLOCKS

RADIOBLOCKS goals

Enabling new scientific discoveries
* Increased sensitivity
* Increased bandwidth
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- higher quality Low-Nois€e
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Cryo-cooled receiver (4K)




Cryo-cooled receiver (4K)

lens(es) separating cooling zones
S1iS mixer for downconversion

low-noise amplifiers + horn




Cryo-cooled receiver (4K)

4 lens(es) separating cooling zones
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simulation -

— enable wider bandwidth

- better transmission
- lower noilise figure
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Novel detectors and

components



Cryo-cooled receiver (4K)

»+ S1S mixer for downconversion




Local
Oscillator

£i--

Mixer: downconvert sky signal to manageable A-to-D bw



Improved S1S mixer(s)

HV: 10 kV WD: 39 mm Mag: 95x 200 ym —

(b)
HV: 10 kV WD: 35 mm Mag: 27x 800 ym —

“* dellvers W1der bandW1dth |
- no impact on noise figure
- uses less DC power *

(less COOllng requlred)

+ S — Novel detectors and
BLOCKS components

Ultra-wideband anéguidé_
to slotline transition




Cryo-cooled receiver (4K)

.~ low-noise amplifiers + horn




Integrated LNA + Subharmonic Image
Rejection Mixers (CAD model)

Corrugated horn

LNA (prototype)

p——— S

-~ more compact components !

(better OMT/mixer/LNA integration)
- wider bandwidth LNAs '
- enabling higher operating

frequencies
BLOCKS L I , _

Novel detectors and

components
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~ a few GHz RF signals
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Sample Rate = 2 X BW

Shannon/Nyquist theorem



4 GHz
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4 GHz X 2 X 2 X 2

= 32 Gbps per telescope (or more)



4 GHz x 2 x 2 X 2 x 8h
~ 110 TB = 0.1 PB

One (1) telescope
One (1) observation



C-band (6 GHz) — 4 GHz = 66.7% fractional BW

0-155 GHz
i EVN
I
: Ef/Srt/Ys
I
I
i SKA-MID
I
0 10
W-band (90 GHz) — 4 GHz = 4.4% fractional BW
: 0-120 GHz
;
I
I
I
I
I
I
I
I
0 2l0 4l0 6l0 8l0 160 120
230 GHz (ALMA) — 4 GHz = 1.7% fractional BW
0+250 GHz
I
I
I
I
I
I
I
I
I
0 50 100 150 200 250

Frequency (GHz)



C-band (6 GHz) — 4 GHz = 66.7% fractional BW

0-15 GHz
S e
| EVN 28 Gbp
|
; Ef/Srt/Ys
|
1
i SKA-MID
I
0 10
W-band (90 GHz) — 4 GHz = 4.4% fractional BW
: 0-120 GHz
:
|
|
|
|
|
|
|
|
0 2'0 4l0 610 8lO 160 120
230 GHz (ALMA) — 4 GHz = 1.7% fractional BW
GHz
0 50 100 150 200 250

Frequency (GHz)



') multi-bang receivers

B N X 4(or more) GHgz
—— —_—

W-band (90 GHz) — 4 GHz = 4.4% fractional BW

I I I -
20 40 60 80 100 1

230 GHz (ALMA) — 4 GHz = 1.7% fractional BW

0 20

0 GHz

Ys

0 50 100 150 200 250
Frequency (GHz)



analogue DBBC4 digital frontend

frontend Max.
mMax. 8 x 28GHz (DiFrEnd28)

8 x 28 GHz + 8 x 4 GHz (DiFrEnd4T)

OPTICAL OPTICAL

DBBC4 Box

Digital Base Band Converter (v4) schematic

Digital receivers

RADIO
BLOCKS
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Digital receivers




ALMA INOEMA

SAVAN

8 X 28 GHz
= §9§_§bps

RADIO
BLOCKS

Digital receivers
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RADIOBLOCKS goals

Enabling new scientific discoveries
* Increased sensitivity
* Increased bandwidth
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RADIOBLOCKS goals

Enabling new scientific discoveries

* Increased Field-of-View



Sensitivity

Radio Source

I
Boresight

. Primary Beam

Sensitivity decreases
toward beam edges \ /

Feed/Receiver

FOV Angle (0)

Parabolic Reflector

FOV=A/D

A = wavelength
D = dish diameter

S




+ sensitivity

Sensitivity
+ resolution : -
. . ¢ adio Source
- Field of View .
I
Boresight

Primary Beam

Feed/Recelver

FOV Angle (9)

Parabolic Reflector

FOV=A/D

A = wavelength
N D = dish diameter




Incoming wave

B
6.6\ Y “\
5t 5t 5t, 5t,



)Ccoming wave
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Signal Matrix

(receivers x time samples)

SOO S01 SOZ SOB S04

S1 0 S1 1 S1 2 S1 3 S1 4

SZO S21 S22 S23 S24

SSO S31 S32 S33 S34
[4 3]

Delay Vector
(phase shifts)

e\(i5t )
e\(idt, )
e\(idt,)
e\(idt )

[5 > 1]

Beam Output

(steered signal)

2 sok-e"(iétk)

2 S k-e”(iotk)

2 S ke”(iotk)

2 S,k e”(iotk)

4 x 1]

Beamforming: Apply phase delays to align signals from different receivers

Otk = geometric delay for receiver k in the desired steering direction




Signal Matrix Delay Matrix Beam Matrix

(receivers x time samples) (time samples x beams) (receivers x beams)
t t, t, t, B, B. B, B, B. B,
A\ N[, i
S01 Soz Sos SO4 to © (KPOO) © (I(Pm) © (KPO?) RO boo bo1
o] | eMio,) | eig,) | eip,,) b b
S S S S R
11 12 13 14 . 1 10 11
x | | eMioy) || eNig,) | e%ip,) |=
S'21 S22 S23 S24 t3 eA(i(P3o) eA(i(P31 ) eA(i(P32) R2 bzo b21
N[, N[, i
t e(ip,) | e*(ip,) | e(ip,)
331 832 S33 S34 ) 2 = = R3 b30 b31
[4 x 5] [5 x 3] [4 x 3]

Multi-beam forming: Each column of the delay matrix steers to a different direction

bij = 2k Sik - e(ipk ;) — beam | output for receiver |
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ADC

ADC




Expanded
Field of View
Multiple Beams

Phased Array Feed (PAF)

Parabolic Reflector

FOV =N x (\/ D)

N = number of beams
L formed by PAF )
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Digital receivers



ADC

ADC

ADC
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RADIOBLOCKS goals

Enabling new scientific discoveries
* Increased sensitivity

* Increased bandwidth

* Increased Field-of-View



RADIOBLOCKS impact
BLOCKS

Focal Plane Arrays require:

« Compactness mmE) Better integration OMTs, mixers, LNAs

» Easier and faster manufacturing

» DC power (less dissipation mm)> Lower load for cryogenic cooler)
* UW power (higher LO power needed to feed all pixels)

Larger bandwidth & Arrays
» Generate larger volumes of data
Digitization starting closer to frontend

* Phased Array Feeds.
» Data filtering & no frequency dependent power loss for downconverted signals
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RADIOBLOCKS goals

Enabling new scientific discoveries PR OF DATA
* Increased sensitivity OCESS

I
* Increased bandwidth \NG-’

* Increased Field-of-View






GPU Tensor

 hardware matrix-multiplication units
- limited precision i1nput data
- ~10x faster than regular GPU cores
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 accelerate training and inference

* only 1n recent GPUs
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B 16/8/4 bits C 32bits

A 16/8/4 bits

D 32bits

perform a [16 x 16] * [1l6 X 16] i1n one go



B 16/8/4 bits C 32bits

A 16/8/4 bits

D 32 bits

Beam Matrix
(receivers x beams)
B

Delay Matrix
(time samples x beams)
B1

Signal Matrix
(receivers x time samples)
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Data transport and correlation
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Tensor Core Correlator



Tensor Core Correlator

- comblnes receliver data
- computational and I/0 challenge
- real-time

— for some instruments required

— others benefit from increased speed/efficiency



Tensor Core Correlator
C « A * AH



Tensor Core Correlator
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Impact of integrating the TensorCoreCorrelator for SFXC-GPU
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Impact of integrating the TensorCoreCorrelatc PU
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Impact of integraii ansorCoreCorrelator for SFXC-GPU
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Data Plane Development Kit

Data transport and correlation
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GH200 fast CPU/GPU shared memory
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DPDK / 1l-copy
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DPDK = GPU

(DPDK ringbuffer in GPU mem)
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Energy efficiency?

real-time run-time limit :
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Energy efficiency?
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RADIO New science in Radio Astronomy: applying cutting-edge technology to enhance the entire data chain, from receiver to final output Grant number: 101093934 K
BLOCKS

RADIOBLOCKS goals

Enabling new scientific discoveries
* Increased sensitivity
* Increased bandwidth

 Increased Field-of-View
Increased DATA PROCESSING!



Local
Oscillator
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Filter Bank 2

Supporting the next-generation of VLBI
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Data processing tool kit

Modular, open-source and flexible components to process interferometry data



More i1nstrument output

more (faster) calibration
more (smarter) 1maging
modern (smarter) analysis
better science!

+ + +



Handling more 1nstrument output

ou abelols

https://pangeo.io/architecture.html

compute nodes



prototype fringefit graph

(lnstrumental + 1onospheric corrections)

RADIO
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(RFI mitigation)

Data processing




Solutio Calibration Pipeline Benchmark: MPI vs Dask
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Dask vs MPI

Calibration Pipeline Benchmark: MPI vs Dask
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Dask vs MPI

Calibration Pipeline Benchmark: MPI vs Dask
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Dask vs MPI

Solutions
—&— MPI nvcomp
~&~ MPI no comp
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Computational hotspots

DP3 OnePredict versus FastPredict

1400 - Step name CPU performance
B Total —e— OnePredict Runtime
mm Predict 250 - —-#- FastPredict Runtime
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Synthetic data for instrument(s)

CASE 1: CASE 2:
EVN (only NE antennas) EVN + SKA core (4 km)

- test calibration algorithms

(1nject controlled error, propagation)

ﬁm&ﬁ - forward modelling




More modern VLBI calibration

." - .-‘ ! 4 ’ 2 ) |
OHOM
. '-. .l' ‘II ‘/
X N
' - i
OHOHOMI
. .J '. : y ‘~ ,”
. ) -
’ ’," P 'l: . 4 \ 1 P——— Db R
l' l '. 3 |‘ 3 :
'R : "

r N [ - . \ 4 . . g

(. 5 4 \' { ) ¢ !

A ‘ d f ; ! ! I i |

I.- -“ ‘- 'l l. = ." “ . ,./ k.' . .'
5 .

o @ o0 @ & @

Bayesian 1nference on VLBI data

- fitting 200 free parameters
(powered by GH200 RADIOBLOCKS cluster!)




More inference! (EHT tools into cm-A4)

|
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EHT modelling s/w to
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More inference! (EHT tools into cm-A4)

— Posterior Probablity

0.05400 0.05401 0.05402 0.05403 0.05404 0.05405

— Binary separation in arcsec

Note: used synthetic data



EHT dynamic imaging into cm-4

lruth kine @ 15 GHz kine @ 5 GHz

15 mas

resolutlon;
15 GHz 0.5 mas

5GHz 1 1.4 mas
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grey body (dust)
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Signal Matrix

(receivers x many time samples)
t t t t

0 1 2 . tm-z 1:m-1 tm

Signal Matrix
(many receivers x time samples)
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[4 x m]
m = number of time samples (high data rate)
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RADIO large-ish data rate (1010) RADIO
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Science enablers: Increase field of view Increase sensitivity and bandwidth

TT_L

The Effelsberg telescope...

A

: ~ _— o

Ef/Sr/Ys ALMA

wd P
psl e MBI R The ALMA telescope...
The SRT telescope...

The NOEMA telescope...

The International LOFAR Telescope... The European VLBI network (EVN)... The SKA telescope...

... hosted by the IRAM institute
E-Merlin...

. hosted by INAF

The Yebes telescope...

... hosted by the European Southern Observatory

O for the European part

hosted by CNIG/IGN

... hosted by the ILT ... hosted by the SKA Office

... hosted by the University of Manchester

Building blocks:
Novel detectors  Digital receivers Transport and Correlator Data (post)processing
and components
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